Overview
This guide shows you how to integrate Latitude Telemetry into an existing application that uses the official OpenAI SDK.
After completing these steps:
- Every OpenAI call (e.g.
chat.completions.create) can be captured as a log in Latitude.
- Logs are grouped under a prompt, identified by a
path, inside a Latitude project.
- You can inspect inputs/outputs, measure latency, and debug OpenAI-powered features from the Latitude dashboard.
You’ll keep calling OpenAI exactly as you do today — Telemetry simply observes
and enriches those calls.
Requirements
Before you start, make sure you have:
- A Latitude account and API key
- A Latitude project ID
- A Node.js or Python-based project that uses the OpenAI SDK
That’s it — prompts do not need to be created ahead of time.
Steps
Install requirements
Add the Latitude Telemetry package to your project:npm add @latitude-data/telemetry
pip install latitude-telemetry
Wrap your OpenAI-powered feature
Initialize Latitude Telemetry and wrap the code that calls OpenAI using telemetry.capture.import { LatitudeTelemetry } from '@latitude-data/telemetry'
import OpenAI from 'openai'
const telemetry = new LatitudeTelemetry(
process.env.LATITUDE_API_KEY,
{ instrumentations: { openai: OpenAI } }
)
async function generateSupportReply(input: string) {
return telemetry.capture(
{
projectId: 123, // The ID of your project in Latitude
path: 'generate-support-reply', // Add a path to identify this prompt in Latitude
},
async () => {
const client = new OpenAI()
const completion = await client.chat.completions.create({
model: 'gpt-4o',
messages: [{ role: 'user', content: input }],
})
return completion.choices[0].message.content
}
)
}
You can use the capture method as a decorator (recommended) or as a context manager:Using decorator (recommended)
import os
from openai import OpenAI
from latitude_telemetry import Telemetry, Instrumentors, TelemetryOptions
telemetry = Telemetry(
os.environ["LATITUDE_API_KEY"],
TelemetryOptions(instrumentors=[Instrumentors.OpenAI]),
)
@telemetry.capture(
project_id=123, # The ID of your project in Latitude
path="generate-support-reply", # Add a path to identify this prompt in Latitude
)
def generate_support_reply(input: str) -> str:
client = OpenAI()
completion = client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": input}],
)
return completion.choices[0].message.content
import os
from openai import OpenAI
from latitude_telemetry import Telemetry, Instrumentors, TelemetryOptions
telemetry = Telemetry(
os.environ["LATITUDE_API_KEY"],
TelemetryOptions(instrumentors=[Instrumentors.OpenAI]),
)
def generate_support_reply(input: str) -> str:
with telemetry.capture(
project_id=123, # The ID of your project in Latitude
path="generate-support-reply", # Add a path to identify this prompt in Latitude
):
client = OpenAI()
completion = client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": input}],
)
return completion.choices[0].message.content
The path:
- Identifies the prompt in Latitude
- Can be new or existing
- Should not contain spaces or special characters (use letters, numbers,
- _ / .)
Streaming responses
When using streaming (stream: true), consume the stream inside your capture block so the span covers the entire operation.
Consume the stream inside your capture() callback. The span stays open until your callback completes:async function streamSupportReply(input: string, res: Response) {
await telemetry.capture(
{ projectId: 123, path: 'generate-support-reply' },
async () => {
const client = new OpenAI()
const stream = await client.chat.completions.create({
model: 'gpt-4o',
messages: [{ role: 'user', content: input }],
stream: true,
})
// Consume stream inside capture — span covers entire operation
for await (const chunk of stream) {
const content = chunk.choices[0]?.delta?.content
if (content) {
res.write(content)
}
}
res.end()
}
)
}
By consuming the stream inside capture, the span duration accurately reflects the total time of the operation, and all child spans from OpenAI instrumentation are properly nested.
Use a generator function with the decorator. The SDK keeps the span open until all chunks are yielded:@telemetry.capture(project_id=123, path="generate-support-reply")
async def stream_support_reply(input: str):
client = OpenAI()
stream = client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": input}],
stream=True,
)
for chunk in stream:
if chunk.choices[0].delta.content:
yield chunk.choices[0].delta.content
The generator pattern is ideal for streaming — each yield sends a chunk to the caller while the span remains open. The span ends automatically when the generator is exhausted.
Seeing your logs in Latitude
Once your feature is wrapped, logs will appear automatically.
- Open the prompt in your Latitude dashboard (identified by
path)
- Go to the Traces section
- Each execution will show:
- Input and output messages
- Model and token usage
- Latency and errors
- One trace per feature invocation
Each OpenAI call appears as a child span under the captured prompt execution, giving you a full, end-to-end view of what happened.
That’s it
No changes to your OpenAI calls, no special return values, and no extra plumbing — just wrap the feature you want to observe.