Skip to main content
This integration is only available in the Python SDK.

Overview

This guide shows you how to integrate Latitude Telemetry into an existing application that uses the official Mistral AI SDK. After completing these steps:
  • Every Mistral AI call (e.g. chat.complete) can be captured as a log in Latitude.
  • Logs are grouped under a prompt, identified by a path, inside a Latitude project.
  • You can inspect inputs/outputs, measure latency, and debug Mistral AI-powered features from the Latitude dashboard.
You’ll keep calling Mistral AI exactly as you do today — Telemetry simply observes and enriches those calls.

Requirements

Before you start, make sure you have:
  • A Latitude account and API key
  • A Latitude project ID
  • A Python-based project that uses the Mistral AI SDK
That’s it — prompts do not need to be created ahead of time.

Steps

1

Install requirements

Add the Latitude Telemetry package to your project:
pip install latitude-telemetry
2

Initialize Latitude Telemetry

Create a single Telemetry instance when your app starts.You must enable the MistralAI instrumentor so Telemetry can trace it.
telemetry.py
import os
from latitude_telemetry import Telemetry, Instrumentors, TelemetryOptions

telemetry = Telemetry(
    os.environ["LATITUDE_API_KEY"],
    TelemetryOptions(
        instrumentors=[Instrumentors.MistralAI],  # This enables automatic tracing for the Mistral AI SDK
    ),
)
The Telemetry instance should only be created once. Initialize it before importing mistralai so clients are automatically traced.
3

Wrap your Mistral AI-powered feature

Wrap the code that calls Mistral AI using telemetry.capture.You can use the capture method as a decorator (recommended) or as a context manager:
Using decorator (recommended)
import os
from telemetry import telemetry
from mistralai import Mistral
from mistralai.models import UserMessage

@telemetry.capture(
    project_id=123,  # The ID of your project in Latitude
    path="generate-support-reply",  # Add a path to identify this prompt in Latitude
)
def generate_support_reply(input: str) -> str:
    client = Mistral(api_key=os.environ["MISTRAL_API_KEY"])
    response = client.chat.complete(
        model="mistral-small-latest",
        messages=[UserMessage(role="user", content=input)],
    )

    return response.choices[0].message.content
Using context manager
import os
from telemetry import telemetry
from mistralai import Mistral
from mistralai.models import UserMessage

def generate_support_reply(input: str) -> str:
    with telemetry.capture(
        project_id=123,  # The ID of your project in Latitude
        path="generate-support-reply",  # Add a path to identify this prompt in Latitude
    ):
        client = Mistral(api_key=os.environ["MISTRAL_API_KEY"])
        response = client.chat.complete(
            model="mistral-small-latest",
            messages=[UserMessage(role="user", content=input)],
        )

        return response.choices[0].message.content
The path:
  • Identifies the prompt in Latitude
  • Can be new or existing
  • Should not contain spaces or special characters (use letters, numbers, - _ / .)

Seeing your logs in Latitude

Once your feature is wrapped, logs will appear automatically.
  1. Open the prompt in your Latitude dashboard (identified by path)
  2. Go to the Traces section
  3. Each execution will show:
    • Input and output messages
    • Model and token usage
    • Latency and errors
    • One trace per feature invocation
Each Mistral AI call appears as a child span under the captured prompt execution, giving you a full, end-to-end view of what happened.

That’s it

No changes to your Mistral AI calls, no special return values, and no extra plumbing — just wrap the feature you want to observe.